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Abstract 

This article, in conjunction with a previous one, proves Drinfeld’s theorems about invariant star 
products, ISPS, on a connected Lie group G endowed with an invariant symplectic structure PI E 
Z*(n). In particular, we prove that every formal 2-cocycle & E PI + A Z*(g))[[h]] determines 
an ISP, FBfi, and conversely any ISP, F, determines a formal 2-cocycle m E p1 + A Z”(g)[[h]] 
such that F is equivalent to F% . We also prove that two ISPS FBh and FQ are equivalent if and 
only if the cohomology classes of /& and m coincide. These properties define a bijection between 
the set of equivalent classes of ISP on (G; PI) and the set ,& + h ‘Ft2(g)[[h]]. 
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1. Introduction 

1.1 

Let G be a connected Lie group and R its Lie algebra. Let ‘H’(a) be the second cohomology 
space of 9 with respect to the trivial representation of (1 on R. Let ,BI E 22((1) be a cocycle 
in the above cohomology such that mapping /?I : g + g*, where $1 (x) . y = /II (x; y), 
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x, y E g, is an isomorphism. We write (G; /It) for the Lie group G endowed with the 
left-invariant symplectic structure defined by pt. 

1.2 

The aim of this paper is to prove a theorem stated by Drinfeld [ 1 I] whose main parts may 
be defined as follows: 

(4 

@I 

(cl 

(4 

Any formal 2cocycle /3h E /It + ft . 2*(g)[[A]] determines, on (G; /I), an ISP 
FBfi 0; .v) E wd%hll. 
Any ISP F’(x; y) determines a formal 2-cocycle & E ,!%I + h . 22 (LJ)[[&]] and is 

equivalent to the ISP @A (x; y) determined by this cocycle. 
The ISPS FBh, F’*l determined, respectively, by cohomologous cocycles /3h and wh = 
Bh + sat,, oh E A . g*[[A]], are equivalent. 
If star products Fpfi and FBI,, & E B1 + A 2*(g)[[n]], are equivalent there exists 

CY~ E h g* [ [tz]] such that Sl, = ph + bolh . 
The above properties define a bijection between the set of equivalent classes of ISPS on 

CC; PI) and the set B1 + h . 7-12(~)[[hll. 
We have proved this theorem in [24], where we gave explicit proofs for parts (a)-(c), but 

not for(d). 
From these invariant star products we can get [ 11,22,29] the corresponding triangular 

quantum groups. 

1.3 

In Section 5 of this paper, we provide the proof for part (d). To do this, we need, in 
particular, more to look at the equivalence in part (c), closely discussed in Section 4. In 
Section 3, we recall the main idea to be developed for the proof of the theorem, briefly 
describe the proof of parts (a) and (b) and state some intermediary results. In Section 2, we 
give some necessary background. 

The following theorem is clear from (a)-(d): 

Theorem 1 (Drinfeld [ 111). Choose a vector subspace V in 2*(g), the space of invariant 
de Rhum 2-cocycles on g, which is a supplementary space of de Rhum 2-exact cocycles 
f?*(g), i.e. 2*(g) = V $ B*(g). Let F’(x; y) be any invariant star product on (G: PI). 
Then, F’(x: y) is equivalent to one obtained in (a) from a cocycle 

j%, = PI + /52 h + ” + fiR AR-’ + . ‘. . 

such that @k E V ifk > 1. Moreover, (j&l is uniquely determined by F/(x; y). 

Clearly, we can identify the set ,!?t + A . V[[A]] with the set pt + A . ‘H*(g)[[h]] through 
the bijection 

[B] E 7?(Q) --+ u = /5 - sa, E v. 
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1.4 

In the case of a general symplectic manifold (M; WI), two star products that are equivalent 
to the order m are equivalent to the order m + 1 if and only if one specific Hochschild 2- 
cocycle km+1 is a coboundary [ 1,171. The theorem is also true in the case of the set of closed 
star products and closed equivalence [6], where the theory is now controlled by the cyclic 
cohomology defined by the condition of closedness. 

The point of the proof of(b) is that if F and F &,wherefih = 81+82A+...+Bmhm-l,are 
equivalent to the order m then km+1 is also an invariant Poisson 2-cocycle and determines 
[20,24] an invariant cocycle &+I. If cocycle & = /$, + &+I tzm is defined, it can be 

proved that F and FDA are equivalent to the order m + 1. This is how the obstruction to the 
equivalence can be removed at every order. 

V 
1.5 

De Wilde and Lecomte [8,9] and Fedosov [ 12,131 have proved that on any symplectic 
manifold (M; wt) there exists a star product. We refer to [2,10,12,14,25,26] for the proof 
of the theorem stating that the set WI + fi . Ti2(A4)[[A]] classifies the equivalence classes of 
the star products on the manifold (M; 01). 

1.6 

For the classification of the equivalence classes of l-differential infinitesimal deforma- 
tions of the dynamical Lie algebra (C?(M); { ; ) I), the reader is referred to [ 151. A bijection 
has been constructed between the equivalence classes of these deformations and the set 

where ?‘(M;wi) = Im(wtr\ : ‘H1(M) + 7i3(M)) and Q2(M; wl) = Ker(wlr\ : 
7-12(M) -+ ‘H4(M)). As with the classification of ISPS, it can be introduced the sym- 
plectic structures defined by the closed 2-forms on M, wh = wl + A . ~2. The deformation 
(CCO(M)[[A]]; { ; )h), may then be defined. A bijection can be constructed between the set 
of injinitesimal deformations which are not equivalent to one defined by some a, and 
the set P1 (M; WI). It is also possible to prove that the equivalence classes of pure [15] 
l-differential infinitesimal deformations are classified by the set wt + A . T-i’(M). 

2. Some definitions and results 

2.1 

Definition 1. An ISP on (G; PI) is a formal deformation in Gerstenhaber’s sense [ 16,171 
of the algebra COO(G)[[A]], i.e. 

c~*ti=~*@+C4(~~+)h’, CP,$ ECU, 
izl 
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where [ 1,231: 

(1) (cp*@)*~=cp*(@*O; 
(2) Fi, i > 1, are left-invariant bidifferential operators on G such that Fi (cp; 1) = Fi ( 1: cp) 

= 0; 
(3) FI (cp; I/J) - FI (+; cp) = P(q; I/J) where P is the Poisson bracket defined by PI. 

Operator F; is therefore defined as a left-translation of a unique element in ‘cr(n) @I 91 (n), 
also designated by Fi (x; y), in the usual non-commutative polynomial notation [4], where 
X, ~1 represent the first and second components, respectively, of Fi in ?[($I) @ YI(g). 

2.2 

If we consider the element F(x; y) = 1 + xi,, Fi(x: y) h’ E !‘l(o) @ %(g)[[h]] condi- _ 
tions (l)-(3) can be written as follows: 

(1’) F(x + y; z) . F(x; y) = F(x; y + z) . F(y; z), 
(2’) Fi(x; 1) = Fi(l; J’) = 0, 

(3’) Fl(x; .v) - FI(Y;x) = Al(x; y>, 
where the product in (1’) is that of ?r(g)@‘[[h]], and F(x + y; z) = (A 13 Z)(F(x; p)), 
etc., (A being the usual coproduct in VI(g)); and A1 E R A (1 defines the invariant Poisson 
structure of (G; Bl), i.e. in a given basis of $1, A1 is defined by (Al)“h(Bl),c = 8:. 

2.3 

The associativity condition (1’) is equivalent to the infinite set of conditions: 

6F, (x; y; z) = a, (x; y; z), m = 1,2,3, . . . , 

where al(x; y; z) = 0, 

cr,(x; y; z) = c [F;(x + y; 2). F;(x; y) - Fi(x; y + z) . Fj(y; z)l 
i+j=m ; i,jll 

if m > 1, and 6 : ?I(g)@ -+ %(q)@(‘+‘) is the coboundary operator [5], of the complex . 
(a(g)@; 6), canonically isomorphic to the subcomplex of the usual Hochschild complex 

(Cm(G); 6) , whose cochains are invariant bidifferential operators on G. 

Theorem 2 (Cartier [5]). Let C E 2’(g) be arz r-cocycle in the complex @l(g)@; 6). 

AC be the skewsymmetric projection of C. Then: 

(1) AC E gr\ .‘. AR, 

(2) C = AC + SB where B E %(g)@‘(‘-I), 
(3) ti’(%((r)@‘; 6) 2 g/\ .:. AR, and the isomorphism being deJilzed by [C] + AC. 

Let 
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2.4 

Definition 2. Let F’, F be two ISPS on (G; PI). We say they are equivalent if there exits 
E(X) = 1 + Ci,i Ei(x) fi’ E a( such that _ 

F’(x; y) = 6(x + y) . F(x; y) . E(x). E(y). 

The latter equality is equivalent to the infinite set of equalities [ 16,19,23] 

F;(x; Y) - Fk(x; y) + G~(x; y) = 6&(x; y), k = 1,2,. . . , 

whereGi(x;y)=O;andforkL2 

Gk(x; y) f G(El, . . . , @-I; F;, . . . , F;_1; Fl, . . , Fk-1)(x; y) 

f c [Ei(x + Y) . F’(x; Y> - Fi(n; Y>. Em - fi;:(x; Y) ’ Ej(X)I 
i+j=k 

- c K(x). Ej(y) - c F;:(x: ~1. Ej(x). C(Y), 
i+j=k i+j+l=k 

wherei, j,l 2 1. 

2.5 

Let A 1 E g A g be the invariant 2-tensor which defines the invariant Poisson structure of 
the symplectic manifold (G; /l)) (in components (At)“b(/?l),c = 6,“). Let p : r\‘g + A,.g 
be the corresponding isomorphism. In the skewsymmetric components 

(Pu(f>)j,...jr = (Bl>jl il f ” (Br>j, i, t”““‘; 

(p-l(u))il+ = (n,)jliI . . (n,)jr’roj ,_,, jr. 

The Poisson cohomology complex (A*g; a), a : A’g + ~‘+‘g, defined by A1 is: at = 
-[t ; Al]sch where [ ; ]S& is the Schouten bracket [18,20,23]. The relation 1 o (-a) = 
5 o /_L, where 8 is the coboundary in the complex of the Lie algebra g, is thereby satisfied. 
Consequently p induces an isomorphism [20] 

/1 : ‘H& ((1) -+ ‘H’(g), 
We can prove: 

PUtI) = L/m>l. 

Proposition 1. 
(1) Let h E A2(g). Then 

ah = -[h; A1]sch = -([h12; A;3] + [h12; A:“] + [h13; A?‘] 

+ [Ai2; h13] + [A,“; h23] + [A;3; h23]) (1) 

where Al2 = A @ 1, Ai3 = P23. Ai2. P23, etc., as in the classical Yang-Baxter 
notation. 
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(2) Let E E R, then 

LIE = -[E ; Al]sch = -([El ; A’l”] + [E2; A; 2]). 

where [ ; ] represents a bracket in the algebra YI(<1)@” or ‘5(q)@*. 

(2) 

3. An invariant star product on (G; ,131) determined by the formal cocycle /Ifi 

3. I 

Letb = B1 +82t+...+BRtR-', t E R where R is finite but arbitrary and pi E 
Z”(~J>. When t is small, BI is an isomorphism. Let (G; PI) be the corresponding symplectic 
manifold. Let Rg, be the central extension of D by the cocycle /I,, 

iig, =cI@RE. LX; .?I = Ix; yl + Bt(x; ~0% 

where X = x + a E, j = y + b E (x, y E g); and E is a generator. Let Gg, be the simply 
connected Lie group with Lie algebra Rp,. Let VP, (X: .$) be the Campbell-Hausdorffformula 
for the Lie algebra is,. The coadjoint orbit of point < + u E* E Cjz, is generated by the 
actions [24] 

Ad*(exp.x).(~+uE*)=Ad*(expx).~+u.,fS,(-x)+”E*, 

where ,r;l, (x) = Bt (x) . A(x) E n* and 

A(x) = 
exp(adx) - 1 

adx 

We are only interested in the orbit of point E* E gz,. Obviously 

Ad*(qc .X) .E* = fP,(-x, +E*. 

3.2 

Let us consider the formal expression 

(cpl 0(~2)(0 = 
s 

e -2Ki((~+E*);h-‘y(hx:hv))(3~,)(X) (&,2)(y) dx dy, (3) 

s7XR 

where F is the Fourier transform [30] and cpt , qq, are functions on <I* + E*. In the case of the 
canonical symplectic manifold (R2n; j3t) = (G; 81) expression (3) is the integral form of 
Moyal star product obtained from the Weyl quantization on this phase space. In particular, 
it can be obtained from the integral form of the star product on the non-compact symmetric 
Khller orbit ((R2”)*; At), of the Heisenberg group IY,, obtained from the Berenzin quanti- 
zation and from operators in the irreducible representation of H,, , determined by the orbit, 
related to the geodesic symmetry at every point in the above symmetric space [21]. 
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We refer to [27,28] for the construction of deformations and quantum groups in the setting 
of multiplier algebras and in the more general case of a Lie group and an abelian subgroup. 

In the general case (G; /ll) [ 1 l] the object is to use the expression (3) to get a star product 
on the orbit 0~* C g* + E* of the Lie group Gbr, which is invariant by the coadjoint action 
of this group on the orbit. 

In [24] we obtained from (3) a formal series 

VI 0 ~2 = w . (~2 + c QR(w; (~2) hR, 
RZ1 

(4) 

which is a formal deformation of Coo(g* + E*; R), i.e., which satisfies (~1 o (~2) o ‘p3 = 
~1 o (~2 oq3), where cpi E CO”(g* + E*; R) and QR, R 2 1, are bidifferential operators on 
g* + E*, invariant by Ad*Gp,, and such that Q~(qi; 1) = QR(~; ~1) = 0. Moreover, on 
the orbit C?E* this formal deformation is an invariant star product. 

3.3 

To obtain [ 1 l] an ISP on G from the one on oE* above, we note that dfp, (0) = bt and 
so, the mapping 

eXpu~~U,cG~OE’Cn*+E*, 

expx--+Ad*(expx).E* = fp,(-n)+E* (5) 

is a local diffeomorphism at e E G. If W, C U, is a symmetric neighborhood such that 
W, W, c U,, we can prove the commutativity relation 

(Ad* . (expz) 0 KG)(y) = (G 0 Lipz)(Y>~ 

for all y E W,, for all z E Wu = log W,. The mapping ICI allows us to pull the star product 
on @* (4) back to G and by the equivariance shown in the above equality (W, generates 
G), the star product so obtained is G-invariant, and can be written as 

+‘I*+2 = lcIl . $2 + c @+k $2) fist (6) 
sg 

where @I, @2 E CCO(G; R) and 

@;($I; @A(expx) = QR(@I 0 K,‘; +2 0 K,‘)(t), 

6 = Kt(expx), x E Wu C g. Fk is therefore an invariant bidifferential operator on G and 
is defined then as a left-translation of an element Fi(n; y) E 91(g) 8 a(g). 

3.4 

Operator Fi (x; y) depends on t through a polynomial in the components of ,& and A,. 
By expanding this product of ajinite number of analytic functions oft (with t small), we get 

F;(x; Y) = c FsL(x; y> tL, S 1 1 
LZO 
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and also FS ~(x; 0) = Fs~(0; y) = 0. If we now set t = A in (6) we prove [24]: 

Theorem 3. Let 

F(x; .Y) = 1 + c FR(x; y)AR, where FR(x; y) = c F.~T(x; y). 
Rzl .S+T=R 

F(x; y) is then an invariant star product on the symplectic manifold (G; PI). We will say it 
is determined by the cocycle 

3.5 

Let (e,; a = 1,2, . . . ,2n} be a basis of u and (x,) the corresponding canonical coordi- 
nates. Then 

(x) = A(-&#), where Z~(X) = Tehexpx . ej, (7) 

whereby we obtain the following Poisson brackets: 

Q~((PI; VJ.)(~ +E*)= ~(~~C)i + (Bt)ij) . $([ +E*). g([ +E*), 
1 J 

F:Wl; $2) = ;~;%,WO) . (et,lCr2)(0) 

Fl(llrl; ‘b/2) = ;~~%,@,)(O). (%+2)(O)> 

where ck j are structure constants of a 
Thus, 

F~(x; y) = iAFbe, @ eb, Fl(x; y) = $Aybe, 8 eb. 

3.6 

The next two propositions help to prove the last theorem in this section, which is the first 
step in proving Drinfeld’s classification theorem (Theorem 1). The proofs are in [24]. 

P~Position 2. Let F, F be the star products on (G; @I) determined, respectively, by the 
formal cocycles 

p?, = ,% + ,32 h +. ” + BR-1 hR-2 + OAR-’ + BR+l hR +. . . 

,% = /h + j32 fi + ‘. . + BR-1 hR-2 + j& AR-’ + BR+, AR + . . . 

Then 

FI = FI ;, . .; FR_I = FR_I and FR - FR = -i/_-‘(BR). 
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Proposition 3. Let F, F be star products on (G; B1) which coincide to the order (R - l), 
i.e., 

Fl = F1; .., ; FR_~ = FR-1. 

Then, there exist hR E g A g and ER E 8 ((1) such that 

&-FR=hR+&ER. 

Moreover h R is not only a Hochschild 2-cocycle but also a Poisson 2-cocycle, i.e. ah R = 0, 
where ahR is given by expression (1). tL(hR) is then a .I?-cocycle on (1. 

From these propositions, we can prove by induction: 

Theorem 4. Any star product F on (G; /?I) determines a formal 2-cocycle on the Lie 
algebra g, 

such that F is equivalent to the star product determined by tf$, as in Theorem 3. 

4. Star products on g, determined respectively by formal cocycles /Ih and 
wh = /IA + SLY*, are equivalent 

4.1 

Let 

/& = PI + 82 t + . . . + BR tR-’ 

and 

be cocycles where oi E 8* and 8 is the de Rham coboundary operator on the invariant 
complex on G. Let zPL, &,, be the central extensions of g corresponding respectively to /3t 
and wt. Let Ggt and G,, be corresponding, connected, and simply connected Lie-groups. 
&, and 90, are isomorphic. Consider the mapping 

h,, : g* + E* + g* + E* 

t+E*-+t+at+E*. 

We can prove: 

Proposition 4. 
(1) Ad* (exp,x) 0 h,, = h,, 0 (Ad* . (expg,x))for all x E g. 
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(2) The operators Q”,f, Q?, R > 1, defining the formal d<formations on o* + E* deter- 
mined, respectively, by ut and #It are related as,follows: 

(3) (PlOo,(P2 = ((cpl 0 A,,) Opt ((p2 0 &Y,)) 0 Lx,. cpl, ‘p2 E Ph*: lw. 

4.2 

Let Kb,, K,, be local diffeomorphisms (5) corresponding, respectively, to cocycles Bt 
and or. Let +I, $2 E COO(G; R). From (3) in Proposition 4 and definitions (4) and (6) of 
star product on (G; Wt) and (G; /It) determined, respectively, by cocycles wt and Bt we get 
the relation 

(1cI1&0,7b2) 0 Mt = ((91 0 Mt)“p, (@2 0 Mt)), (8) 

where Mt = K;,’ o h,, o Kp, with Mt defined in a neighborhood of e E G and t small. 
Let +I Q, $2, @I *&I J!Q be the star products on (G; PI) determined as in Theorem 3, 

respectively, from cocycles oh and ph. By expansion of both sides of expression (8) with t = 
A the equality of both series in powers of A allows us to prove [24]: 

Theorems. Let FYI = 1 +xR,l F? AR, FBh = 1 SIR>, Fp AR besrarproducrson 

(G; /II ) determined, respectively,by cocycles wh = ,tlf, + SC& and ph. There must then be 
an element 

L(X) = 1 + c LRfiR E ?l(!$[[h]] 

R?l 

defined from (8) such that 

FWh (x; Y) = (L-+x + y)) F&l (x; y) . L(x) L(y). 

That is, FWh and FDA are equivalent by L(x). 

5. Proving the converse of Theorem 5 

5. I 

Next two propositions will be useful in Section 5.2 

(9) 

Proposition 5. Let F’, F” be the invariant star products on (G; PI> determined, respec- 
tively, by cocycles 

b;, = ,& + ,92 h + ‘. . + B&l hR-2 + & AR-’ + . 

j$ = b, f ,92 h + . ‘. + bR__l hR-2 + & hR-’ + ‘. 
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The following equalities are then verified (R 1 2) 

F;=F;; F;=F;;...;F;_,=F;_, and Fi - FA = -ip-‘(jIi - &). 

Proo$ Let F be the star product determined by cocycle 

ph = fit + 82 h +. ‘. + BR-1 AR-* + OAR-’ + ,??;+I fiR +. 

The result follows from Proposition 2 in cases F’, F and F”, F. 0 

Proposition 6. Let F, F’ be starproducts on (G; B1) determined, respectively, by cocycles 

& =B,+82h+“‘+BRhR-‘+BR+1fiR+‘.. 

/3; =/%+/32A+... + @R + hR) AR-’ + /&+I hR + ‘. ’ 

That is, $ and &, d#er only by an exact 2-cocycle &R at the coefJicient of AR-‘. In this 
case, element L(x) in the equivalence between F’ and F of Theorem 5, 

F’(x; Y> = W-?x+Y)). F(x; Y) .L(x) .L(Y), 

verifies: 

Ll(X) =. .’ = L&2(x) = 0 (R > 3) and LR-I = ,u-l((YR) (R > 2). 

Proot 
(a) Let 

A;, = c A; A’_‘, Ah = C Ai A’-’ 
izl izl 

be formal series defined through the relations (AL)” ‘(pi), C = S,b and (Ah)“b(#?*), C = 
S,b.Then,A: = Ai;l 5 i 5 R-land(Ai)ab(/3r),. =S,b.If~~and&arepolynomials 
of arbitrary degree, these series are convergent when A is small. 

(b) The invariant operators Ls are defined, (8) and (9), in the following Taylor expansion 
at point (A = 0; x) as 

@l(Y) = (@l 0 ml)(x) = 1cllb> + ~wlm) hS, 

A?1 

where 

Y = ml(x) = WGJ’ 0 L* 0 &?*)(x), 

and {x) are cannonical coordinates at e E G. 
This function is analytical (Sections 3.1 and 3.3) in a neighborhood of the point 

(h = 0; x = 0). Hence the series expansion 

ya = c A;(x) hk, A;(x) = x’, a= 1,...,2n, 
k?O 
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is convergent and A;(x) is analytical in that neighborhood. We can also write the 
convergent series 

(v” - .P)l = c n;‘i@. 
.,j? I 

where 

Q;‘(x) = c A;, (x) . . A;, (x)3 1Sll.T. (10) 
kl+...+k,=S.k,ll 

Finally we obtain (S 1 1) 

(LS$l)(X) = c gj L?&l (x) . n;;n’2’L (x) 
$1 +...+12n $, 

(&l)h . . (39)h (x). 
sI+~~~+s2,=s 

for Si > l; >_ 0,lt + . . + 12,, > 1. Also if 1, = 0 then S, must be zero. Let us define 
niO(x) = 1. 
To compute elements Ls(x) E 81(tj), 1 5 S 5 R - 1, we need to compute AZ(O) for 
14k(R-l,a=l,..., 2n. 

- The equations of n = lcp, (x), (see Sections 3.1 and 3.3) are 

where constants Mt ,,,i,; a are homogeneous polynomials in structure constants of (1 
with respect to the given basis in R. 

- From the definition of h,, , we have 

- The equations of y = (K,;)-‘(X) can be written as 

The equations of y = Mb(x) are then obtained by composing the above mappings. 
In particular, at point x = 0, we get 

yb(O) = (Ayya&JP 
+y'(o). (A$“. (Bi)jk ’ C"~...i~:,Y"(0)."yir(O). 

From the expression y = Mb(x), 

y’(0)=~A~(O)hk (i = 1,...,2n). 
k?l 
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From the equality of the two preceding series in powers of fi, we get 

Ai(0)=Ai(0)=...=Ak_2(0)=0, i= 1,2 ,..., 2n, 

A;_,(O) = (A;)“‘(cQ), = (A#‘@&, = p-l(~~)i. 
(12) 

(d) Assuming 1 5 S _< R - 2 in (IO), then 1 5 kj 5 R - 2 and 1 5 1 5 S. Thus, from 
(12)wegetQ$‘(O)=OforlsS_<R-2andlsliS.Hence 

(L 1 )x=0 = (L2)x=o = . . . = (LR-2)x=0 = 0. 

Obviously, in the polynomial notation in et(g), this is equivalent to 

(e) We now compute the operator (LR_l)x& When S = R - 1 L 1, expression (11) 

contains all the terms s2:” (0) where 1 ( lj 5 Sj 5 R - 1. From (12) all these terms 

are zero except a,_, Jr, (0): 1 5 lj 5 Sj = R - 1. Hence, necessarily 

(LR-1+1)(O) = c Qj’l (0) I,>1 R 1 ($&) (‘I 
/- 

Alsofrom(lO)and(12)itmustbelj = lforj= 1,...,2n.S0 

a;!,(O) = A;_,(O) = ,&((O!R)j. 

Hence 

(L&l),& = p-‘(aR)j ’ = ,?(a& ’ ej(o) 
x=0 

and the corresponding element in ?~(cJ) is therefore 

LR_t(X) = p-‘(o&j ' ej = p-l(CYR). 

The proof is now complete. 

5.2 

We now can prove the converse of Theorem 5. 

Theorem 6. Let F, F’ be the ISPS on (G; ,!?I) determined, respectively, by the cocycles 

& = p1 + /32 h + . ’ ’ + BR hR-’ + . 

j3; = ,I$ + p; h + . . + & AR-’ + ‘. 

Assuming these products to be equivalent, there must be 1x2, . . , (YR . . E g* such that 

@I - pi = TiCfi , i = 2,3, . . , R, . . . 
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Prm$ Let E(x) = 1 + xi,, Ei (x) A’ E ?l(g)[[h]] be the element defining the equivalence _ 

F’(x; v) = (E(x + .Y))_’ . F(x: y) . E(x). E(y). (a) 

(1) A’, = At and from Section 3.5, we have 

F;(.x; .v) = Ft(x: v) = $t%?, @eb = &4,(x; v). (b) 

Thus FI (x; .v) - Fl (v; x) = Al (x: v). 
The term 71 in equivalence (a) is 

F;(..C: v) - Ft (x: .v) = SE1 (x; .v). (c) 

From (b) and (c) we get 6Er(x; v) = 0. Thus, Et(x) E $1 from Theorem 2 (ES! G 

@J(u) @u = 0), and therefore 

EI (x + .v) = EI (xl + EI (y). cd) 

By Proposition 5, for R = 2 and star products F and F’, we can write 

F; = FI and Fi - F2 = --ip-‘(/3; - p:). (e) 

Also, the term h2 in equivalence (a) is (see Definition 2) 

F; - F2 + G2(EI: Fl; F;) = bE2. (0 

From (e) and (f), we get 

Gz(Ei: FI; F;) = ;p-‘C/J; - /b) + bE2. 

whose skewsymmetric projection is 

AG?(El: FI; F;) = ;p-‘(B; - /32). (!a 

We can also compute the left-hand side of(g) from Definition 2, allowing for (b), (d) and 
(2). We then obtain 

G2( E; FI ; F;) = [EI (x); FI (x; ~11 - [FI 0: .Y); EI (.v)l - EI (xl EI (~1 

= $%(xJ: AI Cr; ?‘)kkh - EI @)EI (.v) 

Thus, 

=-;&5,(x; y) - El(x)El(y). 

AGz(El: Fl; F;) = +E,(x; J). 

From (g) and (h) 

&(I$ - 82) = -~EI 

and so 

S; - p2 = wC-~EI) = &(,~(EI)) or B; = BZ + Saz, 

where we set ~2 = @(El). 

(h) 
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We have thereby proved the theorem for i = 2. 
To proceed by induction, we eliminate &Q as follows. Let F(‘) be the star product 

determined by cocycle 

8(2)=B1+82fi+B;h2+...+BktZR-l+... A (k) 

Compare it with F’ determined by cocycle &. Proposition 6 for F’, Fc2) and R = 2 allows 
us to write 

F’(x; y) = (Lc2)(x + y))-’ . Fc2)(n; y) . Lc2)(x) . Lc2’(y), (1) 

where 

IJ2)(x) = &cx’2). 1 

From (a) and (1) we get 

Cm) 

Fc2)(x; y) = (Ec2)(x + y))-’ . F(x; y) . Ec2)(x) . Ec2’(y), (m’) 

where we have defined Ec2) = E . (Lc2))-‘. So Fc2) and F are thus equivalent by Ec2). 
Moreover, from Ec2) . Lc2) = E, at order A’ we get Ei” + ,512) = El. From (m) and 
CQ = p(El), we then obtain 

Ec2)(x) = 0. 1 

We have thus proved that /3; = 82 +&x2, and star products Fc2), F are equivalent, (m’)where 
Ec2) = 0 

l(2) Th . e second step in proof by induction is to treat star produts Fc2), F as we did F’, F. 
We thereby prove that Ei2) E B, /I$ = 83 + &x3 where cr3 = p(Ei*‘), and that star product 
Fc3) determined by cocycle 

and F are equivalent, 

Fc3+x; y) = (Ec3)(x + y))-’ . F(x; y) Ec3)(x) . Ec3’(y), 

where E?‘(x) = E?‘(x) = 0. The theorem is thus proved for i = 3 and we proceed to the 
third step. 

(R - 1) Suppose we have proved that j3( - pi = 6oi for 2 5 i ( R - 1 and that the 
star product F CR-l) determined by cocycle 

(R-1) 
&I = #?I + /92/I + . . . + BR-1 hR-2 + & AR-’ + /??;+I AR + . ‘. 

and F are equivalent, 

FcR-‘)(x; y) = (EcR-‘)(x; y))-’ . F(x; y) . EcR-‘)(x). EcR-‘j(y), (n> 
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where EcR-” E Yl(~)[[tz]] is such that 

(R-I) 
El = E’R-” = . . = Er_;‘) = 0. 2 

We need to prove: 

(i) EkR_y’) E (1 and so EF_;‘)(x + y) = EkR_;“(.x) + E;:;“(Y). 

(ii) B; = BR + 6aR, where (YR = p(E$“) E g*. 

(iii) F’Rp”(.x: y) and F’R)(.x; JJ) determined by cocycle 

(P) 

are equivalent, i.e.. 

F’R-‘)(X: y) = (PR)(X + y))-’ . F’R’(X: y) L(K)(X) L’R’(y), 

where 15’~) satisfies 

L(R) = L(R) = 
2 . . . = L(R) R_7 = 0 and Lr!’ = p-‘(CXR). 

(iv) F’R) is equivalent to F 

F’R’(~x; T) = (EcR)(x + y))-’ F-(x; T) EcR’(x) E’R’(~). 

where 

,@R’ _ &R-l). CL(R)j-l - 

and this E’R) satisfies 

E’R’ = . . . = E(R) 
R-, = O. 

prmf of (i) For star products F and F (R-‘) Proposition 5 allows us to write 

F’ = F,‘Rp”, . , FR-1 = FE:” and FAR-” - FR = -i/C’(/Jk - BR). 

(cl) 

The term B’R-‘) in equivalence (n) is (see Section 2.5) 

F'R-"-F~-~ +G~_;"(E;R-". , EF-;“; F,‘R-“. . . , F&‘): Fl, . . FR__,) R-1 

= 6E;~;“. 

From (P) and (9) and Definition 2 we get that the left-hand side of this equation is 0. Then 
6E’R-‘) 

R-I = 0 and so Er_y’) E g. Hence 

EE;‘)(x + .v) = Ef_;“(x) + Er’;“(y). (r) 

wx?fsf (ii, The term h R in equivalence (n) is 
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,&-l) 
R - FR + Gf-l’(EiR-“, . . . , Ey_y’); F,‘R-“, . . . , Fg;‘); F’, . . , FR_‘) 

= 6ER-’ 
R . (s) 

From (q), (p), 0-j and (2), 

Gfpl)(EfR-“, . . . , E$‘); FI(R-l), . . . , Ff_y’); F’, . . . , FR_I) 

= @F_;‘)(x) ; AI(x; ~11 - [-41(x; Y>: E$‘k~)l) 

= ;[EF_;“(x) ; Al’(x; y)]&‘, = -@Ef_;‘)(s; y). 

From this equality, the second equality in (q) and (s), we get (recalling that GEM-” is a 
symmetrical tensor) 

& - BR = /A-aEp_;“) = &L($_;‘))) = &R, 

where we have defined CXR = p(EF_<“). This proves (ii). 
proofof(iii) By Proposition 6, for FcR) and F(R-l), there must be LCR) E ‘?t(n)[[A]] 

such that 

FcR-‘)(x; y) = (LcR)(x + y))-’ . FcR)(x; y) . LCR)(x) . J!,(~)(Y), (t) 

where 

L(R) = . . = L(R) 1 R_2 = 0 and Lr!, = pII( 

This proves (iii). 
proofof From equivalence (t) and (n), 

(u) 

FcR)(x; y) = (EcR)(x + y))-’ . F(x; y) . EcR)(x). EcR)(y), 

where we have defined EcR) = EcR-‘) (,!,(R))-'.The term hi ofthis equality is 

E(R) + L(R) = ~cR-1) 
1 1 1 ’ (v) 

p + L!R) + 
I I c EjR’ . L:R) ZY E;R-” (i 1 2). (w) 

j+k=i ; j.k>l 

From (p), (u) and (v) we get 

ECR) zz 0 
1 . 

From (w) for i = 2 

(4 

ET’ + $’ + @R) L;R’ = @R-l). 

Allowing for (p) and (u) we now get Ey) = 0. By proceeding in this way, we obtain 

ECR) = . . . = Ej& = 0 
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and also from (w), for i = R - 1, 

Ek”l, + L (RI _ E(R-‘) 
R-l - R-l 

and from (u) and definition (YR = w(Ef&“), we get EaR_‘, = 0. 
This proves (iv), and the proof of the theorem is now complete. 
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