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Abstract

This article, in conjunction with a previous one, proves Drinfeld’s theorems about invariant star
products, ISPS, on a connected Lie group G endowed with an invariant symplectic structure 8| €
22(q). In particular, we prove that every formal 2-cocycle By € 81 + h - Z2(a))[[#]] determines
an ISP, F##_ and conversely any ISP, F, determines a formal 2-cocycle wy, € A1 + A - Z2(@)[[h]]
such that F is equivalent to F“*. We also prove that two ISPS F#* and F“* are equivalent if and
only if the cohomology classes of 8; and wy coincide. These properties define a bijection between
the set of equivalent classes of ISP on (G; f1) and the set 8; + % - H*(q)[[%]].
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1. Introduction
1.1

Let G be aconnected Lie group and g its Lie algebra. Let 72 (g) be the second cohomology
space of g with respect to the trivial representation of g on R. Let 8; € Z2(g)be a cocycle
in the above cohomology such that mapping B;:g — g*, where Bi(x) -y = Biix;y),
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X,y € g, is an isomorphism. We write (G; 8;) for the Lie group G endowed with the
left-invariant symplectic structure defined by 8.

12

The aim of this paper is to prove a theorem stated by Drinfeld [11] whose main parts may
be defined as follows:
(a) Any formal 2-cocycle Bn € By + h - Z2(g)[[#]] determines, on (G; B1), an ISP
FPr(x; y) € A(@)®2[[A]].
(b) Any ISP F’(x; y) determines a formal 2-cocycle B, € Br+h- Z2()[[#]) and is
equivalent to the ISP F B (x; y) determined by this cocycle.
(¢) The ISPS F#n Fon determined, respectively, by cohomologous cocycles 8 and wy, =
Bn + 501;,, ay € h - g*[[#]], are equivalent.
(d) If star products FPn and Fﬂ'/v, ﬁ,’, € Br+n- Zz(g)[[h]], are equivalent there exists
ay € h- g*[[h]] such that B}, = By + b
The above properties define a bijection between the set of equivalent classes of ISPS on
(G; B1) and the set B1 + 1 - H2()[[R]).
We have proved this theorem in [24], where we gave explicit proofs for parts (a)—(c), but
not for (d).
From these invariant star products we can get [11,22,29] the corresponding triangular
quantum groups.

1.3

In Section 5 of this paper, we provide the proof for part (d). To do this, we need, in
particular, more to look at the equivalence in part {(c), closely discussed in Section 4. In
Section 3, we recall the main idea to be developed for the proof of the theorem, briefly
describe the proof of parts (a) and (b) and state some intermediary results. In Section 2, we
give some necessary background.

The following theorem is clear from (a)—(d):

Theorem 1 (Drinfeld (11]). Choose a vector subspace V in Z2(g), the space of invariant
de Rham 2-cocycles on g, which is a supplementary space of de Rham 2-exact cocycles
B2(q), i.e. Z%2(a) = V & B%(q). Let F'(x;v) be any invariant star product on (G: By).
Then, F'(x: y) is equivalent to one obtained in (a) from a cocycle

Br= P+ Boh+ -+ prAfT

such that By € V ifk > 1. Moreover, {8} is uniquely determined by F'(x; y).

Clearly, we can identify the set 8; + # - V[[1]] with the set 81 + & - H2(q)[[#]] through
the bijection

[Ble H (q) > v=B—-ba e V.
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1.4

In the case of a general symplectic manifold (M; w;), two star products that are equivalent
to the order m are equivalent to the order m + 1 if and only if one specific Hochschild 2-
cocycle k11 is a coboundary [1,17]. The theorem is also true in the case of the set of closed
star products and closed equivalence [6], where the theory is now controlled by the cyclic
cohomology defined by the condition of closedness.

The point of the proof of (b) is that if F and FP where By, = Bi+Po b+ - -+PBm A" are
equivalent to the order m then k,, 4 is also an invariant Poisson 2-cocycle and determines
[20,24] an invariant cocycle Bny1. If cocycle B; = Bp + Bmy1 h™ is defined, it can be
proved that F and F % are equivalent to the order m + 1. This is how the obstruction to the

equivalence can be removed at every- order.
¥
1.5

De Wilde and Lecomte [8,9] and Fedosov [12,13] have proved that on any symplectic
manifold (M; w) there exists a star product. We refer to [2,10,12,14,25,26] for the proof
of the theorem stating that the set w; + # - HZ(M)[[h]] classifies the equivalence classes of
the star products on the manifold (M; w).

1.6

For the classification of the equivalence classes of 1-differential infinitesimal deforma-
tions of the dynamical Lie algebra (C>°(M); {; }1), the reader is referred to [ 15]. A bijection
has been constructed between the equivalence classes of these deformations and the set

PUM; w1) © HE M)/ Q*(M; o),

where PY(M; w)) = Im(wA : H'M) - H3M)) and Q*(M; w)) = Ker(wiA :
H2(M) — H*(M)). As with the classification of ISPS, it can be introduced the sym-
plectic structures defined by the closed 2-forms on M, wy = w) + % - w;. The deformation
(C(M)[[A1]; {; }»), may then be defined. A bijection can be constructed between the set
of infinitesimal deformations which are not equivalent to one defined by some wy, and
the set P! (M; w)). It is also possible to prove that the equivalence classes of pure [15]
1-differential infinitesimal deformations are classified by the set wy + # - HZ(M ).

2. Some definitions and results
2.1

Definition 1. An ISP on (G; B,) is a formal deformation in Gerstenhaber’s sense [16,17]
of the algebra C*(G)[[#]], i.e.

pxY =g Y+ )Y Fl@yh'. o vel0),

i>1
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where [1,23]:

(D) (@xy)*xE=9* (A x§);

(2) F;,i > 1, are left-invariant bidifferential operators on G such that F;(¢; 1) = Fi(1: ¢)
=0;

(3) Fi(¢; ¥) — F1(¢; ¢) = P{p; ¥) where P is the Poisson bracket defined by 8;.

Operator F; is therefore defined as a left-translation of a unique element in 2 (q) ® V((g),
also designated by F;(x; y), in the usual non-commutative polynomial notation {4], where
x, y represent the first and second components, respectively, of F; in ¥ (q) & (q).

2.2

If we consider the element F(x; y) = 1+ >, Fi(x: VR € Aq) @ A(w)[[#]] condi-
tions (1)-(3) can be written as follows: -
(1) Fx+y:2)- Fl; ) = Fx; y+2) - F(y; 2),
2) Fi(x: )= Fi(1;y) =0,
(3 Fi(x; y) = Fi(y; x) = A(x; y),
where the product in (1') is that of 9[(g)®3[[h]], and F(x + v;2) = (A @ D(F(x;y)),
etc., (A being the usual coproduct in A(g)); and A1 € g A g defines the invariant Poisson
structure of (G; By), i.e. in a given basis of g, A is defined by (Al)“b(ﬁl)(“‘ = 85?.

2.3
The associativity condition (1”) is equivalent to the infinite set of conditions:
SFp(x;vi2) =an(x;y;2), m=1,2,3...,
where & (x; y; 2) =0,

ap(x;yi2) = Z [Filx+y:2)- Filx; ) — Fileo v+ 2) - Fi(v; 2]
i+j=miijz

ifm > 1,and & : A(g)® — A(g)®"*D is the coboundary operator [5], of the complex
(A()®; 6), canonically isomorphic to the subcomplex of the usual Hochschild complex
(C>®(G); 6) , whose cochains are invariant bidifferential operators on G.

Theorem 2 (Cartier [S]). Let C € Z7(q) be an r-cocycle in the complex ((q)®; 8). Let
AC be the skewsymmetric projection of C. Then:

(1) AC € gn -~ Ag,

(2) C =AC + 6B where B € A(g)®" D,

3) H (A(@)®; ) = gr L Ag, and the isomorphism being defined by [C] — AC.
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Definition 2. Let F’, F be two ISPS on (G; 8). We say they are equivalent if there exits
E(x) =1+ Y ;5 Ei(x)' € A(a)h such that

Fl;9) =E (x+y) Flx;y) - E(x) - E(¥).
The latter equality is equivalent to the infinite set of equalities [16,19,23]
Fo(x;y) = B ») + Gl y) = 8Ep (x5 y), k=1,2,...,
where G (x; y) = 0; and for k > 2

Gi(x; )=G(E1, ..., Ex—t; F, ..., Fi_|; Fi, oo, FcD)(x5y)
= Y [Eix+y) F/(x;y) — Fi(x; y) - Ej(») = Fi(x; y) - Ej(x)]

it j=k
- Y E®-EM- Y. Fxy-E®-E),
it+j=k i+j+=k

where i, j,I > 1.
2.5

Let A| € g A g be the invariant 2-tensor which defines the invariant Poisson structure of
the symplectic manifold (G; B) (in components (A1)??(B1)qc = 5?). Leti: A"g— Arg
be the corresponding isomorphism. In the skewsymmetric components

W®)jyjy = Bjyiy - B iy 1177
(™ @) = (AN (AT
The Poisson cohomology complex (A*g; 8), @ : A"q — ArHlg, defined by Ay is: 9t =
—[t; Ay]sch where [; Jsch is the Schouten bracket [18,20,23]. The relation p o (—8) =
6 o w, where 6 is the coboundary in the complex of the Lie algebra g, is thereby satisfied.
Consequently ¢ induces an isomorphism [20]
i Hy (@) — H (), w(le]) = @)l

We can prove:

Proposition 1.
(1) Let h € A%(g). Then

Oh = —[h; Ailsen = —((h' % AP]+ [012 AP + (212 A7)
+ (AP RCTH1A72 R+ (A R (D

where A%z =AQ®]1, AP = p?3. A%z - P23, etc., as in the classical Yang—Baxter
notation.
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(2) Let E € q, then
OE = —[E; Mlser = —([E'; A}P)+ [E: A}PD). (2)

where [ : | represents a bracket in the algebra 91(q)®> or 9(q)®2.

3. An invariant star product on (G; $,) determined by the formal cocycle 8;,

3.1

Let By = B1 + Bat +--- + BrtR~ 1, t € R where R is finite but arbitrary and g; €
Zz(g). When ¢ is small, B, is an isomorphism. Let (G; 8;) be the corresponding symplectic
manifold. Let gg, be the central extension of g by the cocycle f;,

98, = a ® RE, [X; ¥1=[x; y1 + B, (x; VE,

where x = x +aE,y = y + bE (x, y € g); and E is a generator. Let Eﬂ, be the simply
connected Lie group with Lie algebra gg, . Let yg, (x: y) be the Campbell-Hausdorff formula
for the Lie algebra gg,. The coadjoint orbit of point & + u E* € ﬁgr is generated by the
actions [24]

Ad"(@Xp- %) - (£ + uE*) = Ad*(expx) - & +u - fp,(—x) + u E*,

where fg,(x) = B (x) - A(x) € g* and

We are only interested in the orbit of point E* € g}}y. Obviously
Ad'(&Xp& - %) - E* = fp,(—x) + E*.
3.2
Let us consider the formal expression

(@1 0 @2)(E) = / e ZHETEN AT P (k) (Fp ) (x) - (Fp) (v) dx dy, (3)

axg

where F is the Fourier transform [30] and ¢y, ¢; are functions on ¢* + E*. In the case of the
canonical symplectic manifold (R?"; 81) = (G, B) expression (3) is the integral form of
Moyal star product obtained from the Weyl quantization on this phase space. In particular,
it can be obtained from the integral form of the star product on the non-compact symmetric
Khiiler orbit ((R¥)*; A1), of the Heisenberg group H,, obtained from the Berenzin quanti-
zation and from operators in the irreducible representation of H,, determined by the orbit,
related to the geodesic symmetry at every point in the above symmetric space [21].
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We refer to [27,28] for the construction of deformations and quantum groups in the setting
of multiplier algebras and in the more general case of a Lie group and an abelian subgroup.

In the general case (G; B1) [11] the object is to use the expression (3) to get a star product
on the orbit Og» C g* + E* of the Lie group Gﬂ,, which is invariant by the coadjoint action
of this group on the orbit.

In [24] we obtained from (3) a formal series

propm=0i o2+ Y Orlpr; p) %, “)
R>1

which is a formal deformation of C*(g* + E*; R), i.e., which satisfies (¢; © ¢2) ¢ 93 =
@1 © (92 © ¢3), where ¢; € C®(g* + E*; R) and Qg, R > 1, are bidifferential operators on
g* + E*, invariant by K&*Eﬂ,, and such that Qg(p1; 1) = Qr(1; ¢1) = 0. Moreover, on
the orbit O~ this formal deformation is an invariant star product.

3.3

To obtain [11] an ISP on G from the one on Qg+ above, we note that d fg, (0) = 5, and
so, the mapping
expUp = U, §G£> Op+ € g* +E*,
expx — Ad (&xpx) - E* = f5,(—x) +E* (5)

is a local diffeomorphism at e € G. If W, C U, is a symmetric neighborhood such that
W, - W, C U,, we can prove the commutativity relation

(Ad" - (@XPz) 0 K)(y) = (Kr 0 hexp2) (D).

forall y € W,, forall z € Wy = log W,.. The mapping K; allows us to pull the star product
on Og+ (4) back to G and by the equivariance shown in the above equality (W, generates
G), the star product so obtained is G-invariant, and can be written as

Vi =¥ v+ Y Fis v b, 6)

S$>1
where ¥, ¥ € C°(G; R) and

Fr; y2)(expx) = Qr(¥1 o Kl 92 0 K7 (8),
& =Ki(expx),x € Wy C q. F ,’e is therefore an invariant bidifferential operator on G and

is defined then as a left-translation of an element F ,’e (x; y) € A(a) ® A(g).

34

Operator F(x; y) depends on ¢ through a polynomial in the components of 8, and A,.
By expanding this product of a finite number of analytic functions of 7 (with 7 small), we get

Fi(;y) =Y Fspyrh, s>1
L>0
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and also Fs (x;0) = Fs1(0; y) = 0. If we now set t = % in (6), we prove [24]:

Theorem 3. Let

Fiy) =14 ) FrOo ) where Frixiy) = ) Fsr(xiy).
R>1 S+T=R

F(x: y) is then an invariant star product on the symplectic manifold (G; By). We will say it
is determined by the cocycle

Brn=PF1+Bh+ Bk’ + -+ B
3.5

Let{eq: a=1,2,...,2n} be abasis of g and {x,} the corresponding canonical coordi-
nates. Then

0 .
(3xa) (x) = A(=x)z€;(x), where ¢;(x) = Tohexpx - €], 7

whereby we obtain the following Poisson brackets:

t . * __1_ k . 8_(@ * ?ﬂ *
Qiler: 92)¢ +EY) = 3 (8ci; + (Bi j) og, € TED an(HE).

F{ (Y15 ¥2) = S 422 @ 91)(0) - (Ep¥2)(0)
Fi(y1: ¥2) = A7 @u91)(0) - (€, 92)(0),

where cf‘ j are structure constants of g.
Thus,

Flaiy) = 1A%, ®ep,  Fi(x;y) = $A%, ®ep.
3.6

The next two propositions help to prove the last theorem in this section, which is the first
step in proving Drinfeld’s classification theorem (Theorem 1). The proofs are in [24].

Proposition 2. Let F, F be the star products on (G; B) determined, respectively, by the
formal cocycles

ﬁh :ﬂ]+ﬂ2h+"'+ﬂR—]hR‘z+0hR_l+ﬂR+1hR+...
ﬁh=ﬂl+,32h+“'+ﬂR—1hR'2+,BRhR'1+ER+1hR+...

Then

Fi=F;...;Fg_y = Fg_y and Fgp—Fg= —%M_I(ER)~
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Proposition 3. Let F, F be star products on (G; B1) which coincide to the order (R — 1),
ie,

Fi=Fp;...; Froy = Fpo).
Then, there exist hg € g A g and Eg € 91(q) such that
FR — Fr =hpg +5ER.

Moreover, hg is not only a Hochschild 2-cocycle but also a Poisson 2-cocycle, i.e. 8hg = 0,
where Ohp is given by expression (1). u(hg) is then a 2-cocycle on q.

From these propositions, we can prove by induction:

Theorem 4. Any star product F on (G; B) determines a formal 2-cocycle on the Lie
algebra g,

Br=PB1 +Brh+ -+ pra%T 4.

such that F is equivalent to the star product determined by By as in Theorem 3.

4. Star products on g, determined respectively by formal cocycles g, and
wy = Bp + by, are equivalent

4.1

Let

B =B+ ot 4+ pref!

and
w =B+ B+ bax)t+ -+ (Br+bar) R = B + by

be cocycles where o; € g* and & is the de Rham coboundary operator on the invariant
complex on G. Let gg , g, be the central extensions of g corresponding respectively to g,
and w;. Let Eﬂ, and Ew, be corresponding, connected, and simply connected Lie-groups.
@g, and g, are isomorphic. Consider the mapping

Ay, i@ +E* — g* + E*
E+E*— £ +a, +E*.

We can prove:

Proposition 4.
—_— —k
(1) Ad - (expwlx) oAy, = Ag, 0 (Ad " - (expﬂtx))for all x € q.
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(2) The operators Q%, Qﬁ ', R > 1, defining the formal deformations on q* + E* deter-
mined, respectively, by w, and B; are related as follows:

NEEE W )
oy (ggg;g)zgﬁ(gg;%;g—a,) for all £ € g*.

(3) 10w, 02 = ((ProAg) 0 (P20 ) 0h o, @12 € C@E":R).

4.2

Let Kg,, Ko, be local diffeomorphisms (5) corresponding, respectively, to cocycles 8,
and ;. Let ¥1, Y2 € C*°(G; R). From (3) in Proposition 4 and definitions (4) and (6) of
star product on (G; w;) and (G; B;) determined, respectively, by cocycles w;, and 8, we get
the relation

(Y%, ¥2) o My = (Y1 0 Mp)xg, (Y2 0 My)), (8)

where M; = IC;II o Ae, © K, with M; defined in a neighborhood of ¢ € G and ¢ smail.

Let 1 %, Y2, Y1 *g, 12 be the star products on (G B1) determined as in Theorem 3,
respectively, from cocycles wy, and f5. By expansion of both sides of expression (8) witht =
# the equality of both series in powers of # allows us to prove [24]:

Theorem 5. Let F*" = 1+ Y po  Fg" 0, FP =143 ¢ | Fg" hR be star products on

(G; B1) determined, respectively, by cocycles wy = By, + 50&, and By. There must then be
an element

L) =1+ Legh® e w@in
R>1

defined from (8) such that
Fo(x;y) = (L™ x + y)) - FPr(x; ) - L(x) - L(y). 9)

That is, F“" and F#* are equivalent by L(x).

5. Proving the converse of Theorem 5
5.1

Next two propositions will be useful in Section 5.2.

Proposition 5. Let F', F” be the invariant star products on (G; B1) determined, respec-
tively, by cocycles

Bp=HB1+Barh+ -+ Bra B R 4
Br=PBr+ Bt 4 Broa R BT
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The following equalities are then verified (R > 2)

F{=F; Fj=Fy;...; Fp_y=Fp_, and Fp—Fp=—3u"1 (B — Bp).
Proof. Let F be the star product determined by cocycle

Br=PBi+Bh+ -+ Brah® P r0on® gL mR

The result follows from Proposition 2 in cases F’, F and F ”, F. d

Proposition 6. Let F, F’ be star products on (G; By) determined, respectively, by cocycles

Br=B1+Bh+ -+ BrAET 4+ Bri mR 4.
By =B+ P+ + (Br + bag) A% + Brpnf + -

That is, B, and By, differ only by an exact 2-cocycle bag at the coefficient of RR 1. In this
case, element L(x) in the equivalence between F' and F of Theorem 5,

F'x;9) = L7 e +y) - Fx; p) - Lx) - L(y),

verifies:
Li(x)=-=Lga(x)=0 (R>3) and Lg_;=p""(ar) (R>2).
Proof.
(a) Let
Ay=)_ AR A=) An!

i>1 i>1

be formal series defined through the relations (A})??(8; ) c = 82 and (A)?°(Bn)ac =
Sf.Then,A; = A;;1 <i <R—1land (Al)“b(ﬂl)ac = 6£.Ifﬂ,’1 and B, are polynomials
of arbitrary degree, these series are convergent when # is small.

(b) The invariant operators Lg are defined, (8) and (9), in the following Taylor expansion
at point (h = 0; x) as

Vi) = (W10 Mp)(X) = Y1 (0) + ) (Lsy)(®) A5,

A>1

where
Y = Mp(x) = ((Kuy) ™' 0 Aay 0 Kg,) (1),

and {x} are cannonical coordinates at e € G.
This function is analytical (Sections 3.1 and 3.3) in a neighborhood of the point
(A = 0; x = 0). Hence the series expansion

Y=Y Afnt, Af(x)=x%, a=1,....2n,
k>0
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is convergent and Aj(x) is analytical in that neighborhood. We can also write the
convergent series

(ya _ xa)l — Z_lehS‘
S>1

where

28 (x) = > §0)- AL (), 1SS (10)

kl+'“+k1:5.kj21
Finally we obtain (S > 1)
31|+~"+lzn¢,l

(Ax DYl ... (3x2mym

1 ;
Lsynmy= Y. =2l 2f ). (x),

L!
S+ 482, =8

(11
for S; > 6; =2 0,l| +---+ Dy = 1. Alsoif I, = 0 then S, must be zero. Let us define
2% =1.

(¢) To compute elements Ls(x) € (g), 1 < § < R — 1, we need to compute A{(0) for
Il<k<R~-1l,a=1,...., 2n.
— The equations of n = Kg, (x), (see Sections 3.1 and 3.3) are
Na=—x(Bndia — X' (Br)in p_ M, x'"ox,

r>1

where constants M l"l ..i..o are homogeneous polynomials in structure constants of g
rs

with respect to the given basis in g.
~ From the definition of A,,, we have

E= Ay pr1 () =n+agh®l

— The equations of y = (ICﬂ;,)‘1 (x) can be written as
{ / b { I,
yb — (A;l)absa 4 yl . (Ah)ll (,Br/l)lk Z Mjkl-wi,-;a-vll e yl: .
r>1
The equations of y = My (x) are then obtained by composing the above mappings.
In particular, at point x = 0, we get
Y0y = (43" (@p)ah !
+370) - (A" Bk D ME Y 1O) -y (0).

r>1

From the expression y = My (x),

YO =) ALOr G=1.....2n).

k=1
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From the equality of the two preceding series in powers of , we get

A’i(O) = AL(0) = = Al 5(0) =0, i=12,..,2n,
e 1(0) = (AN (@R)a = (A (ar)a = 1™ (ar)".

(d) Assumingl < § < R—-2in(10),then1 <k; < R—2and 1 <! < §. Thus, from
(12)weget9§l(0)=0f0rl <S<R-2and1 <[ < §. Hence

(12)

(L)x=0 = (L2)x=0 ="+ =(Lp-2)x=0=
Obviously, in the polynomial notation in 2(g), this is equivalent to
O0=(UL)=0=Lix) U@, i=12,....,R—-2

(e) We now compute the operator (Lgr-1)x=0- When § = R — 1 > 1, expression (11)
contains all the terms .Q;jlj (0) where 1 <[; < §; < R — 1. From (12) all these terms

are zero except .Q;&](O), 1 <I; <8; = R — 1. Hence, necessarily

1
(Lr-191)(0) = Zrz”qm)( ; vn) (0).
=1 (a j)

Also from (10) and (12) it mustbe [; = 1 for j =1,...,2n. So
251,00 = Af_ (0 = u”(@p)’.
Hence

j d :
(Lr-1)x=0 = 4~ (@r)’ - (@) = u"(@r) - &(0)
x=0

and the corresponding element in 2(q) is therefore
Lg-1(x) = p" (@) -¢j = u~' (@p).
The proof is now complete. o
5.2
We now can prove the converse of Theorem 5.

Theorem 6. Let F, F’ be the ISPS on (G, B1) determined, respectively, by the cocycles

Brn=P1+Fh+ +prhfT 4
By=Bi+ B+ -+ pph+

Assuming these products to be equivalent, there must be a3, ..., ag ... € g* such that

B — B =bai, i=23,....R,...
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Proof. Let E(x) = l—{-ZiZl Ei(x)k e W()[[#]] be the element defining the equivalence
F'(xiy) = (E+y)~" - Flxiy) - E() - E(). (a)

(1) A} = Ay and from Section 3.5, we have
Fl(xiy)=Fi(x:y) = %A‘l”’e,, ®ep = SA1(x1 ). (b)

Thus F1(x; v) — Fi(y: x) = Aj(x: y).
The term # in equivalence (a) is

Filxiy) — Fi(x:y) = 6E(x; ). (c)

From (b) and (c) we get §E(x; v) = 0. Thus, Ej(x) € g from Theorem 2 (R =
8% (q)®° = 0), and therefore

Ev(x +y)=Ei(x) + E1(y). (d)
By Proposition 5, for R = 2 and star products F and F’, we can write

Fl=F and F,—F=—3u""(8; - f2). (e)
Also. the term 72 in equivalence (a) is (see Definition 2)

Fy— Fa4+ Ga(Ey: Fi; F|) = 8En. ()
From (e} and (f), we get

Go(Ey: Fis F) = 3u” ' (B ~ B2) + 6 En,

whose skewsymmetric projection is
AGa(Er: Fi: F}) = $u™' (By — Bo). (g

We can also compute the left-hand side of (g) from Definition 2, allowing for (b}, (d) and
(2). We then obtain

GoUE\Fii F)) =[E1(x); Fi(x: )] = [Fi(x: ¥): Ex()] — E1(x)Eq(y)
= 3[E1(x): A1(x; Mseh — EV () E ()
=—13E1(x: y) — E1()EL(y).
Thus,
AGy(Ey; Fi; F)) = —30E (x: y). (h)
From (g) and (h)
u”'(By — Ba) = —OE,
and so
By~ B2 = w(—BE)) = 8(u(Ey)) or By =P+ bas.

where we set oy = u(Ep).
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We have thereby proved the theorem for i = 2.
To proceed by induction, we eliminate 6o, as follows. Let F be the star product
determined by cocycle

BY =B+ Brh+ Bh 4o+ B )

Compare it with F’ determined by cocycle ;. Proposition 6 for F', F @ and R = 2 allows
us to write

Fy)=@LP0+y™ FOuy) - LPw) - LP ), (M
where

Lﬁz)(x) =pu (). (m)
From (a) and (1) we get

FOx;y) = (EPx+y)™"  Fx:y) - EPx)- E@(y), (m')

where we have defined E® = E - (L®)~!. So F@ and F are thus equivalent by E®.
Moreover, from E® - L® = E, at order ! we get £ §2) + LEZ) = Ey. From (m) and
a2 = u(Ey), we then obtain

EP@ =o.

We have thus proved that ,Bé =B +30t2, and star products F @ F are equivalent, (m")where
E? =o.

(2) The second step in proof by induction is to treat star produts F‘?), F as we did F’, F.
We thereby prove that Eéz) € g, ,Bé = B3+ 5a3 where a3 = ;/,(Eéz) ), and that star product
F® determined by cocycle

By = Bi+ Pt B3h + B 4
and F are equivalent,
FOUu; y) =EPa+y)™" Fiy) - EQ@) - EQ(y),

where E 53) (x)= E£3) (x) = 0. The theorem is thus proved for i = 3 and we proceed to the
third step.

(R — 1) Suppose we have proved that g/ — g; = ba; for2 < i < R — 1 and that the
star product F(R—D determined by cocycle

BFTY = B4 o 4+ oy BEE 4 B n R 4 B BE 4
and F are equivalent,

FE D y) = E®Vayn™  Faiy - E* V- R V), (n)
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where ER™1 € 9((q)[[#]] is such that
~(R—1 ~(R—=1)
| :l:,; )="~—L‘4;?7 = 0. (p)

We need to prove:

(i) Ef " e qandso ER ”(x+»)_E‘R Do+ ES V.

(i1) ﬁR—ﬁR+6aR,whereaR—u( Dy e g,
(i) FRDx:vyand FR(x; v) determmed by cocycle

Bt =B+ Brt e Br R g R
are equivalent, i.e.,

F(R_l)(x: y) — (L(R)(x + }’))_l . F(R)(Xl y) - L(R)(x) . L(R)(,\'L
where L'® satisfies

L =1F = =%, =0 and L =p ' @p.

(iv) F'® isequivalentto F
By = ERPG+ )™ Fan - ERw - ER .

where

ER) — p(R=1) ([ (R))=]
and this E® satisfies

ERF=...=EP =0

proof of (i)  For star products F and F®~D Proposition 5 allows us to write

Fr=Ff 0 Fro = F" and FETU — Fr = 17V - Br).
(q)
The term #'8~ D in equivalence (n) is (see Section 2.5)
FYY —Fro+G 8 DEED L ERD R FEY R e

= 6E"
From (p) and (q) and Definition 2 we get that the left-hand side of this equation is 0. Then
GE;R:]” = 0 and so E;R__l” € q. Hence

EFa+n=ES "+ ES (0. (r)

proof of (ii)  The term % in equivalence (n) is
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R-1 R-1 R—1 R—1 R-1 R—-1
FEY pe 4+ GEERDD L EE Y R R FRo)

1

=6ER". (s)
From (q), (p), (r) and (2),
G VERD L ERD ERY R R L Fron)
= JEFP @ Al =[x ES V0D
= HEF V@) AL Wsen = —30EF V(i ).
From this equality, the second equality in (q) and (s), we get (recalling that 6 E}QRw]) is a

symmetrical tensor)

B — Br = n(—EF V) = b(u(EY V) = bag,

where we have defined ag = ;L(E;R:ll)). This proves (ii).

proof of (iii) By Proposition 6, for F® and F(R=1_ there must be L& e A(g)[[A]]

such that

FE Dy = W@+ )™ FR G y) - LB @) - LB (),
where

L= =LP =0 and LY, =u (ar).

This proves (iii).
proof of (iv) From equivalence (t) and (n),

FRG@y) = ERP@+ ™ Faiy) ER@) - E® ),
where we have defined E® = E®=D . (L(®))~1 The term #’ of this equality is
E}R) + LER) — E§R~I)’

ER+L®+ Y ER.LP=gFY 022,
Jk=i; jk=1
From (p), (u) and (v) we get
ER —o.
From (w) fori =2

ER + 10 4 R B = pR=D,

Allowing for (p) and (u) we now get EéR) = 0. By proceeding in this way, we obtain

(R) _ _ B _
Ey = =Ep,=0

®

(w)

v)
(w)

(z)
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and also from (w), fori = R — 1,
(R) (R) __ p(R-1)
Ep it Lg i =Eg,y

and from (u) and definition a g = u(EEQR__l)), we get E;;i)l =0.
This proves (iv), and the proof of the theorem is now complete. o
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